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Abstract: This article reveals that the mass sensitivity of the quartz crystal micro-

balance (QCM) is acceleration dependent and this feature is not specific to only the

QCM, but also is valid in the case of other balances. During quartz crystal vibration

a megagravity field is created at the surface of the quartz resonator. The existence of

this field is demonstrated using C-nanoparticles deposition. It is shown that the

product of the minimum detectable mass and the acceleration acting on that mass is

a constant for both QCM and beam balances, thus, explaining why QCM is more

sensitive than are conventional analytical microbalances. The article introduces the

concept of acceleration-dependent mass sensitivity and explains the origins of QCM

sensitivity to a liquid viscosity. Based on this concept, several fundamental principles

for mass measurements are formulated.
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Measuring lengths and masses were probably the earliest challenges of
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When King Hiero of Syracuse asked Archimedes (285–212 BC) whether

his new crown was really made of pure gold, the philosopher immersed the

crown and an equal weight of pure gold, attached to the arms of a beam

balance, into a vessel of water where the crown seemed to be lighter.

According to Archimedes’ principle, the pan of the beam balance on which

the crown was laid was pushed upwards because the crown displaced a

volume of water larger than that displaced by the pure gold laid on the

other pan of the balance. This was a clear evidence of the fact that the

goldsmith had intermixed some lighter metal, probably silver. The additional

volume of water displaced by the crown could weight several 10s of grams,

which were easily detected at that time.

The balances we use today in our laboratories, e.g., beam, cantilever,

torsion, or spring balances, depending on their maximal load, can detect

even 10210 kg.

On the other hand, the quartz crystal microbalance (QCM), which

became a largely used instrument during the last decades, can detect up to

10216 kg.

Since the quartz crystal microbalance was first introduced by Sauerbrey in

1959, it has become a largely used instrument for small mass measurements

in vacuum, gas, and liquid phase (Ballantine et al. 1997; Lu and Czanderna

1984; Martin et al. 1991; Kanazawa and Gordon 1985; Martin et al. 1993;

O’Sullivan and Guilbault 1999; Rodahl and Kasemo 1996; Marx 2003;

Mecea 1994). Several questions related to QCM work are still lacking a

sound explanation:

. Why is QCM more sensitive than conventional analytical microbalances?

. Why must the deposition on the surface of a quartz resonator be adherent

to its surface?

. Why does the frequency response of the QCM in contact with a liquid

depend on the liquid viscosity and quartz resonator surface roughness?

The aim of the article is to provide an answer to these questions and to put

some light on the more general problem of mass measurement.

SENSITIVITY ANALYSIS

Quartz Crystal Microbalance

Ever since the use of quartz crystal resonators for frequency control appli-

cations in radio-communication equipment began, the effect of a foreign

material deposited on their surfaces on their resonant frequency has been

known. However, a quantitative relationship was not established until 1959.

The possibility of using quartz crystal resonators as quantitative mass
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measuring devices was first explored by (Sauerbrey 1959). The decrease of the

resonant frequency of a thickness shear vibrating quartz crystal resonator,

having AT or BT cut, was found to be proportional to the added mass of

the deposited film:

Df ¼ �
f 2
q Mf

NrqS
¼ �

f 2
q mf

Nrq

ð1Þ

where fq is the fundamental resonant frequency of the quartz, N is the

frequency constant of the specific crystal cut (NAT ¼ 1.67 � 105 Hz . cm;

NBT ¼ 2.5 � 105 Hz . cm), rq ¼ 2.65 kg/dm3 is the quartz density, and S is

the surface area of the deposited film, the mass of which is Mf. When the

deposited film covers the whole sensitive area of the quartz resonator it is

easier to use the areal density, mf ¼ Mf/S, to further calculate the film

thickness, lf ¼ mf/rf, where rf is the density of the deposited film. A

typical quartz crystal resonator is shown in Fig. 1.

The keyhole-shaped electrodes on both major faces of the quartz

resonator are vacuum deposited gold or silver films, about 150 nm in

thickness. The mass-sensitive area is situated in the central part of the

resonator, covering about the area where the two electrodes overlap.

Equation (1) shows that the QCM mass sensitivity, Df/mf, is proportional

to the square of the quartz resonator frequency.

There are also experimental data showing that on the surface of a quartz

crystal resonator we have a mass sensitivity distribution that closely follows

the vibration amplitude distribution. In Fig. 2 experimental results published

elsewhere are shown (Mecea 1994, 1989). The recorded frequency change

for deposited silver spots, which have the same mass, Mf, is proportional to

the vibration amplitude in that point indicated by the voltage, U. A 5 MHz,

plano-convex, AT-cut resonator with 200 mm curvature radius was used.

The diameter of the resonator was 14 mm. It had silver electrodes of

different diameters on each side: 13 mm on the flat side and 6 mm on the

convex side. To reveal the mass sensitivity distribution, small silver spots

having the same thickness and a diameter of 0.6 mm were vacuum

Figure 1. A typical quartz crystal resonator used for mass measurements.
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deposited along one of the crystal diameters, with 0.5 mm spacing between

them. The amplitude distribution along the same diameter was revealed by

using the scanning probe method (Mecea 1994, 1989). The voltage, U, is pro-

portional to the vibration amplitude in each point along the chosen diameter.

Similar results were reported in the literature (Sauerbrey 1959; Sauerbrey

1964; Mueller and White 1968; Martin and Hager 1989; Schneider and

Martin 1995; Buttry and Ward 1992; Lucklum and Hauptman 1997).

Both the mass sensitivity and amplitude distribution curves follow a

Gaussian function (Martin and Hager 1989). The displacement of a point,

vibrating with simple harmonic motion, may be described as

x ¼ A sin ðvtÞ ð2Þ

where A is the vibrational amplitude in that point and v ¼ 2pf is the angular

frequency.

The acceleration of this motion is

a ¼ �v2A sin ðvtÞ ¼ �4p2f 2A sin ðvtÞ ð3Þ

The maximum value of the acceleration in that point is amax ¼ v2A. On

the crystal surface the highest vibration amplitude, A0, and the maximum

acceleration, a0 ¼ v2A0, are in the center of the quartz resonator.

From Eq. (1) we conclude that the mass measuring sensitivity is pro-

portional to the square of the quartz resonator frequency. From the experi-

mental results shown in Fig. 2 we conclude that the mass measuring

sensitivity of the QCM is proportional to the vibrating amplitude at that

point. These two statements lead to the conclusion that the physical

quantity that determines the mass measuring sensitivity in every point on

Figure 2. Mass sensitivity related Df and vibration amplitude related U distribution

along one of the quartz resonator diameters.

V. M. Mecea756



the surface of a quartz crystal resonator is the acceleration of the crystal

vibration in that point.

Earlier experimental results in gas and vacuum (Sauerbrey 1964;

Kanazawa 1997; Borowsky et al. 2000) indicated that the vibration

amplitude in the center of a quartz resonator is in the range from 10 nm to

200 nm.

In order to correlate the mass measuring sensitivity in the center of

the quartz crystal resonator with the corresponding acceleration in this point

we shall rely on the previous results obtained for amplitude measurements

in the center of a 5 MHz plano-plano AT-cut quartz resonator using

scanning tunneling microscopy (Borowsky et al. 2000). Here it is stated that

the maximum vibration amplitude in the center of such a crystal is

A0 ¼ CQVd; ð4Þ

where C ¼ 1.4 � 10212 m/V, Q is the quality factor of the quartz resonator,

and Vd is the peak voltage applied on the quartz resonator electrodes.

A small silver spot with a diameter of 0.45 mm and thickness of 200 nm,

measured with an adjacent film thickness monitor having a mass Mf¼

3.3399 � 10210 kg was vacuum deposited in the center of a 4951605 Hz

plano-plano AT-cut quartz resonator. The frequency change, Df¼

96.925 Hz, the crystal inductance, L ¼ 73 mH, and resistance, R ¼ 15V,

were measured with a Hewlet Packard network analyzer model E 5100A,

driving the crystal at P ¼ 100mW. Calculating Q ¼ vL/R ¼ 151411 and

Vd ¼
ffiffiffiffiffiffiffiffiffi
2PR
p

¼ 0.0548 V we get A0 ¼ 116.1 Å. The maximum acceleration

is a0 ¼ 1.1238 � 107 m/s2 ¼ 1.1456 � 106 g, where g ¼ 9.81 and m/s2 is

the gravitational acceleration. It shows that, in the center of a quartz

crystal resonator, acceleration is more than one million times higher than is

the gravitational acceleration. Using plano-convex quartz resonators with

higher Q value and higher driving levels, this acceleration can be much

higher. Thus a quartz crystal resonator can create a megagravity field on its

surface.

In order to evaluate the minimum detectable mass in the center of the

quartz resonator, we used the frequency shift Df ¼ 96.925 Hz corresponding

to the deposition of a silver spot with a mass Mf ¼ 3.3399 � 10210 kg. The

minimum detectable mass, Mf
min, also depends on the frequency stability,

Df/f, which can be attained over the length of the mass measuring process.

Previously reported results (Warner and Stockbridge 1963), showed an exper-

imental frequency stability of Df/f ¼ + 1.5 � 1029 and stated that even

1 pg/cm2 can be detected in case of a better temperature stability. This

corresponds to a frequency stability of Df/f ¼ 1.13 � 10211. In some

special conditions (Vig and Walls 1994), using better temperature control

and ultra-high vacuum we can rely on an even better frequency stability,

Df/f ¼ 5 � 10212. In this case Mf
min ¼ 8.53 � 10217 kg. It is interesting
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to look at the product between the minimum detectable mass and the

acceleration acting on that mass:

G ¼ Mmin
f � a0 ¼ 8:53� 10�17 kg � 1:1238� 107 m/s2

¼ 9:5536� 10�10N � 10�9N ð5Þ

Conventional Microbalances

We can compare this result obtained for the case of the QCM with the case

of the most sensitive balances we currently use in our laboratories: beam,

cantilever, torsion, or spring balances. Depending on their maximum

allowable load, the minimum detectable mass is Mf
min ¼ 0.1mg ¼ 10210 kg.

This sensitivity can only be attained in a vibration-free environment at a

constant temperature.

All these balances have a common feature: the acceleration acting on the

measured mass is just the gravitational acceleration, g. In this case we have

G ¼ Mf
min . g ¼ 9.81 � 10210 N � 1029 N.

The G should not be interpreted as a universal constant. It is rather a

proof that there is a connection between mass and acceleration. The

magnitude of G refer to the same level of exigency towards the environmental

conditions for both QCM and conventional balances. This idea was first

discussed earlier (Mecea et al. 1996).

Acceleration Dependent Mass Sensitivity

On the surface of a quartz crystal resonator the acceleration of the shear

vibration varies from zero to several millions times the gravitational accelera-

tion, g, over a distance of 2 to 3 mm from about the electrode edges to the

electrode center. The mass sensitivity varies in the same way.

The effect of the gravitational acceleration on the cantilever, torsion, and

spring balances is obvious and will not be discussed here. However, a beam

balance works as a comparator and it is interesting to take closer look at

this type of balance.

In case of a beam balance with arms of equal lengths, the equilibrium

is attained when MA
. g ¼ MB

. g, where MA and MB are the masses of the

bodies laid on the pans A and B, respectively, and g is the gravitational accel-

eration. We will have equilibrium when MA ¼ MB, whatever the value of the

acceleration is. The two bodies will be in equilibrium on both Earth and on

the Moon. However, the mass sensitivity is not the same on Earth and on

the Moon. In the general case, at equilibrium we have MA
. a ¼ MB

. a,

where a is the magnitude of the acceleration in that point. This is illustrated

in Fig. 3.
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The balance sensitivity is measured by the tipping angle a, which corre-

sponds to a small difference between the two masses. For small angles, a is

proportional to the difference between the two forces acting on the two arms:

a ¼ k (MA �MBÞ a ð6Þ

where k is a constant that depends on the mechanical construction of the

balance. If a ¼ 68 on Earth, it will be only 18 on the Moon. None of the

balances we normally use in our laboratories (beam, cantilever, torsion, or

spring) can be used on a space laboratory orbiting around Earth, because

the gravitational acceleration is canceled by the centrifugal acceleration.

However, a QCM works excellently in outer space (Mecea 1994). The mass

deposited on the surface of a quartz crystal resonator is subjected to an

acceleration caused by the vibration of the quartz resonator.

The maximum value of the acceleration on the crystal surface can be

increased by increasing the driving level in the crystal. However this will

not increase the integral mass sensitivity of the crystal. The additional

energy will be shared between quartz and the deposited film and the same

fraction of vibration energy will be transferred to the film, whatever the

driving level is. This is clearly stated in the Energy Transfer Model (Mecea

1994).

The value G � 1029 N corresponds to very stable conditions. For a QCM

this means ulta-high vacuum, constant temperature, no temperature gradients,

and no stress inside the crystal resonator. For a laboratory balance this means

constant temperature, no air convection, and no external vibrations. These

provide an additional acceleration, which will be vectorially added to the

gravitational acceleration.

Figure 3. Mass sensitivity of a beam balance.
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EXPERIMENTAL EVIDENCE FOR THE PRESENCE OF A

MEGA-GRAVITY FIELD ON THE SURFACE OF A

QUARTZ RESONATOR

The experiments were performed using QCM-lab equipment with a specially

designed oscillator, which permits a high drive level of the quartz resonators

up to 150 mA. Using automatic level control (ALC) the crystal current could

be scanned between 1 mA and 100 mA with different rates.

In these experiments six MHz, AT-cut plano-convex quartz resonators

(Maxtek P/N 103200 and P/N 103218), with gold electrodes and a

diameter of 14 mm were used.

The carbon-covered iron nanoparticles were deposited by an L-CVD

(Laser assisted Chemical Vapor Deposition) system consisting of a vaporiz-

ing/sublimation chamber and a deposition chamber. An ArF excimer laser

was used, operating at a wavelength of 193 nm, 50 Hz [nominal pulse

duration: 15 ns (FWHM)] and a fluence of around 110 mJ/cm2. The laser

beam was focused with a cylindrical lens achieving a focusing area above

the QCM-crystal of 0.13 cm2 located at around 2 mm above the crystal.

The precursor ferrocene was vaporized/sublimated at a temperature of

438C and introduced into the deposition chamber by the carrier gas, argon

(Ar). The gas mixture of ferrocene and argon traveled parallel with the laser

beam for 10 cm before reaching the deposition zone. Total pressure in the

system was 30 mBar with a linear gas velocity of 8 cm/s. Most of the time

the deposition time was 40 min.

In Fig. 4 a quartz resonator, which was coated with carbon nanoparticles

for 40 minutes while the crystal current was 90 mA, is shown.

Although the laser beam was about 20 mm wide and the crystal was

placed about 3 mm under the laser beam, the deposition was located only in

Figure 4. A 6 MHz plano-convex AT-cut quartz resonator coated with carbon

nanoparticles for 40 minutes, while the crystal current was 90 mA.
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the central part of the resonator where its vibration is located. This might be

interpreted as sedimentation induced by the mega-gravity field of the shear

vibrations in the center of the crystal. The deposition also revealed some

parallel lines with significant difference in thickness. Those locations

where the carbon film is thinner are regions where the crystal vibration has

an out-of-plane component. At these locations the acceleration of the

vibrations normal to the crystal surface is high enough to expel the carbon

nanoparticles, which accumulate at the nodal locations. This experimental

result is in accordance with the calculations made by EerNisse, Benes, and

Schmid (2002) for flexural vibrations associated with the normal shear

vibrations of the AT-cut resonators. The fact that deposition is located

mostly in the central part of the resonator might be interpreted as a proof

that shear vibrations induce sedimentation of the deposited carbon nanoparti-

cles. It is a competition between sedimentation induced by shear vibrations

and expelling induced by out-of-plane vibrations of the crystal. In Fig. 5 a

resonator is shown that was coated with carbon nanoparticles while the

crystal was placed 1 mm under the laser beam and the crystal current was

140 mA. It reveals two lobes, symmetrically positioned vs. the crystal

centrum. The carbon-nanoparticles were also expelled because of the high

acceleration. The amplitude of the out-of-plane vibrations in these regions

is about 6% of the maximum amplitude of the shear vibration in the center

of the crystal (Eer Nisse et al. 2002). The amplitude of the shear vibration

can be calculated using the equation established by Borowsky, Mason,

and Krim (2000). In our case it is about 100 million times higher than is the

gravitational acceleration. Thus the acceleration of the out-of-plane vibrations

in the region of the two lobes is about 6 million times higher than is the grav-

itational acceleration. This acceleration develops a force, normal to the crystal

Figure 5. A 6 MHz plano-convex, AT-cut quartz resonator coated with carbon-

nanoparticles while the crystal current was 140 mA.
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surface, which exceeds the binding force of the carbon-nanoparticles to the

gold electrodes. In Fig. 6 a scanning electron microscope (SEM) picture of

an area located at the edge of one of the two lobes is shown. This reveals

the expelling of the carbon-nanoparticles agglomerates in the region with a

high acceleration normal to the crystal surface.

The experimental results shown here reveal the complex situation on the

surface of a shear vibrating quartz resonator used in QCM applications.

The very high acceleration of the shear vibrations induces sedimentation of

the C-nanoparticles, while the out-of-plane vibrations induce an expelling

of the C-nanoparticles. In the early years of the QCM it was thought that

AT-cut resonators exhibited a pure shear vibration. Later compressional

waves were detected in liquids and the explanation was based on the

existing velocity gradients in the contacting liquid (Martin and Hager

1989). The two lobes shown in Fig. 5 reveal that compressional waves are

also produced by the crystal itself. In more recent research, the possibility

for flexural vibrations was evidenced. This is slightly evident even in Fig. 4.

Thus, by coating a quartz resonator with C-nanoparticles it was possible

to reveal the effects of the megagravity field.

FUNDAMENTAL PRINCIPLES OF MASS MEASUREMENTS

The equivalence principle, formulated by Einstein in 1907, states the equality

of the gravitational and inertial masses. This is not only the basis for the theory

of general relativity, but also has a direct consequence: if both a gravitational

Figure 6. SEM picture of an area situated at the edge of one of the two lobes on the

surface of the quartz resonator coated with carbon nanoparticles, the crystal current was

140 mA.
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field and an inertial field are present at a point of space, then the total accel-

eration is ~at ¼ ~ag þ ~ai, where ~ag is the gravitational acceleration and ~ai is

the inertial acceleration.

At a certain point of a gravitational field ~ag has the same magnitude and

direction.

At a certain point of an inertial field ~ai can have a time-dependent

magnitude and direction.

It is not possible to penetrate into a body, to identify all the atoms, and to

add their masses in order to get the total mass of that body. One should use

something that can act on a body from a distance, and this is the field. For a

neutral body the field should be gravitational, inertial, or a superposition of

these fields. For an electrically loaded body, the field can be electric or

magnetic. In a mass spectrometer we need at least an electric field to

measure the mass of the ions.

On the surface of a vibrating quartz crystal resonator we have an inertial

field, its maximum intensity being at the center of the quartz resonator. The

strong inertial field can be interpreted as a megagravity field. Here the sedimen-

tation of even atoms and the development of anomalous phenomena is possible.

A megagravity field may be useful in many applications in metallurgy, solid

state chemistry, polymer physics, materials processing, or biochemistry.

Recently (Cooper et al. 2001; Dultsev et al. 2000), this mega-gravity field

was used for the development of the so-called “bond breaking spectroscopy”

and it might explain the enhanced catalytic activity on vibrating catalysts

(Nishiyama et al. 1997; Kelling et al. 1997).

The inertial field developed at the surface of the QCM permits its use as a

mass sensor in the outer-space on a space laboratory orbiting around the

Earth although the gravitational acceleration is cancelled by the centrifugal

acceleration (Mecea 1994).

The QCM is not only a mass sensor, but also an actuator, providing a

megagravity field on its surface.

It doesn’t matter what the vibrational mode of the quartz resonator is, in

order to be used as a mass sensor (Benes et al. 1995; Martin et al. 1998; Mecea

1994; Wenzel and White 1989).

It doesn’t matter if we use quartz or other piezoelectric material for mass

sensing (Fritze et al. 2001; Mecea 1994; O’Toole et al. 1992).

The only important thing is to provide an acceleration to the body who’s

mass we want to measure.

QCM RESPONSE IN A LIQUID

The concept of an acceleration-dependent mass sensitivity can explain why

the frequency of a shear vibrating quartz crystal resonator, in contact with a

liquid, depends on the viscosity of the liquid.
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The frequency change, when one face of a quartz crystal resonator is in

contact with a liquid with density rl and viscosity hl, was first calculated by

(Kanazawa and Gordon 1985) and later using the Energy Transfer Model

(Mecea 1994).

Df ¼ �f 3=2
q

rlhl

prqmq

 !1=2

ð7Þ

where rq and mq are the quartz density and shear modulus, respectively.

When such a resonator is in contact with a liquid, and this is a common

situation in many applications of the QCM, the vibration amplitude, and

also the acceleration, decay exponentially from the crystal surface into the

liquid, as shown in Fig. 7.

A(y) ¼ A0 expð�y=dÞ ð8Þ

where d ¼ (hl/p fq rl)
1/2 is the penetration depth, defined as the distance into

the liquid layer where the vibration amplitude has diminished e times. Here hl

and rl are the liquid viscosity and density respectively, and fq is the quartz

resonator frequency. A0 is the maximum vibration amplitude at the center

of the crystal resonator.

The larger the distance y from the quartz-liquid interface, the lower

the vibration amplitude and acceleration. A certain small volume of liquid

situated at distance d from the quartz-liquid interface will produce a

frequency change e-times smaller than that produced by the same volume

of liquid situated in direct contact with the quartz surface. Because the mass

sensitivity is acceleration dependent, it is obvious that the mass sensitivity

depends on both the liquid density and viscosity. Liquid viscosity determines

the amplitude and acceleration decaying profile. It is a widespread opinion that

QCM is not only sensitive to the density of the contacting liquid, but also to

the viscosity of this liquid (Henry 1996). This is true, but it is a second

Figure 7. Amplitude and acceleration decay at the quartz-liquid interface.
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order effect. The prime effect is an acceleration-dependent mass sensitivity

and acceleration, as well as vibration amplitude, follows a function that

includes both the liquid viscosity and density, as illustrated in Fig. 7. It is

interesting to notice that in Eq. (7) we have the product between density

and viscosity under square root. The two physical quantities can not be

separated. It should be a mechanism that is binding them together. This is

the acceleration-dependent mass sensitivity.

The film deposited on the quartz resonator surface must be adherent to the

quartz resonator surface in order to have the same acceleration as the quartz

resonator.

When the quartz resonator is in contact with a liquid, its roughness, or

crevices can trap liquid molecules that will vibrate with the same amplitude

and acceleration as the quartz resonator surface. These trapped molecules

will exhibit a solid film behavior, producing an additional frequency change

(Martin et al. 1991; Theisen et al. 2004).

CONCLUSIONS

The QCM is not only a sensitive mass sensor but it is also an actuator generat-

ing a megagravity field on the surface of the quartz resonator. The very high

mass sensitivity of the QCM is explained by the very high acceleration acting

on the deposited film.

The product between the minimum detectable mass and the acceleration

acting on that mass is a constant for both QCM and analytical microbalances

when equivalent experimental conditions are used. For best experimental

conditions this constant has a value of about 1029 N.

Acceleration is a paramount condition for mass measurement. Therefore,

in order to measure the mass of a body, we must place that body in a field.

The viscosity-dependent frequency change of a quartz resonator in

contact with a liquid is a second order effect resulting from the accelera-

tion-dependent mass sensitivity of the QCM.
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